
 - 1/27 -

Revision Questions for MT262
Tutor : Rifat Hamoudi
Staff No. : 00567451
Pager No. : 07669-801 509

I have put this tutorial on the web. This tutorial can be viewed and downloaded from
http://www.users.totalise.co.uk/~rifat then selecting MT262 Tutorials then Exam Revision.

Revision questions taken from various past exam papers and past MT262 tutorials

PART I example questions

Question 1 (5 marks)
The following design fragment is to change each occurrence of the character 'a' in a given string Line
(implemented as an AnsiString), to the character 'A' and to count the number of changes made. The string
Line is assumed to be initialised. The data table is as follows.

Type Identifier Description

Integer Count Count of the number of changes made to Line

Integer Index Index to individual characters of Line

String Line The string being manipulated

1 Count ← 0
2.1 loop for Index ← 1 to Length(Line)
2.2 if Line[Index] = 'a' then
2.3 Line[Index] = 'A'
2.4 Count ← Count + 1
2.5 ifend
2.6 loopend
3 write out "Revised string is ", Line
4 write out "Number of changes was ", Count
Write a C++ code fragment to implement this design fragment. You may assume that the MT262io library
of functions is available for your use.

(SSR coding)

http://www.users.totalise.co.uk/~rifat

 - 2/27 -

Question 2 (5 marks)
A TV tuner sold as an additional piece of hardware for a PC can be tuned to one of 60 channels numbered 1
to 60. Part of a program that will enable the user to tune the TV is to prompt the user with a channel
number. This channel may be accepted by the user pressing 'A' (for Accept) or rejected by pressing 'N' (for
Next channel number) in which case the user is prompted with the next channel number in the sequence.
The first channel number presented to the user should be 1 and if a channel has not been accepted by the
time channel 60 is displayed then channel 60 should be followed by channel 1. You may assume that all
keys except A and N have already been disabled from the keyboard and that pressing either A or N will
result in a capital letter being generated. (In other words there is no scope for user data entry errors and so
such errors may be ignored in the question.) You have decided on the following top-level design and data
table.
1 initialise data
2 loop while still going
3 process next outcome
4 loopend

Type Identifier Description

Character Choice Key pressed by the user

Integer Channel Current channel number

Boolean StillGoing true until user presses the key A.

Refine this design to a stage where it is ready for coding in C++. (SSR Design)
Question 3 (6 marks)
A golf club keeps data on its members in the form of records. Each record holds the following information.
• the name of the member
• the age of the member (as a whole number of years)
• the exact handicap of the member (as a real number)
There are 100 such records to store.
(a) Write down a C++ declaration for a record type, MemberType, to hold the four pieces of information.

Declare a variable Members to hold a table of 100 such records.
(b) Write C++ code statements to initialise Members[20] to represent a member called Best, aged 52

whose handicap is 8.4.
(c) Assuming that all the records have been initialised write a fragment of code whose purpose is to search

the table for the record relating to a member called Sargent and to change the handicap field of this
record to 8.3. You may assume that there is a record in the table having Sargent in its name field.
(Datastructure)

Question 4 (6 marks)
(a) Write definitions - heading and function body - for the function specified below.

QualifiedAverage

Integer Scores[20], Integer Qualification

Find and return the average of all the numbers in Scores which have value less than or equal to
Qualification. If there are no such values then return -1

Real QualifiedAverage

(b) Assuming that MyScore is an initialised integer array of 20 elements write down a call to
QualifiedAverage that will assign to a float variable, MyAverage, the average of all values less than or
equal to 10 in MyScore. (Functions)

 - 3/27 -

Question 5 (5 marks)
An incomplete code fragment to write three integer values to a file and then read them back again is as
follows.

ofstream OutFile;
ifstream InFile;
int Count;

 //Associate OutFile with the external file Data.txt
 for (Count = 1; Count <= 3; Count = Count + 1)
 {
 //Store (Count + 10) in OutFile
 //Write out prompt that begins "Number stored to ... "
 }
 //Close the file
 Count = 0;
 //Associate InFile with the external file Data.txt
 while (// not at the end of the file)
 {
 //Read in the next number from the file
 Count = Count + 1;
 //Write out prompt that begins "Number retrieved from ... "
 }
 //Close the file
 //Write out the prompt that begins "Count of numbers retrieved was "

The following output should be obtained when this program is run.
Number stored to file was 10
Number stored to file was 11
Number stored to file was 12
Number retrieved from file was 10
Number retrieved from file was 11
Number retrieved from file was 12
Count of numbers retrieved was 3

Write the complete code corresponding to the fragment above (including that given above). You will need
to replace each comment by a single C++ statement or expression. The standard output file cout should be
used to generate prompts on the screen.

(Input/Output)

 - 4/27 -

Question 6 (5 marks)
In a program concerned with the emulation of a railway system there are 10 stations, numbered 0 to 9
between which a train continuously commutes. Each station has a name which, for simplicity, we will call
A, B, ..., J so that station 0 has name A, station 1 name B and so on. The train starts at station 0 and works
towards station 9. When it arrives at station 9 it reverses and works back towards station 0 and so on. The
state of a train, when it is at a station, is to be modelled using the following class declaration.
class TrainType
{
private:
 AnsiString Names[10];
 // names of 10 stations
 int Location;
 //current location of a train
 bool Outward;
 //true if train is going in direction of station 0 to 9
public:
 void MoveOneStation(void);
 /*If the train is on an outward journey increment Location. If this
 results in Location 9 modify Outward. If the train is on an inward
 journey decrement Location. If this results in Location 0 modify
 Outward. */

 AnsiString CurrentStation(void);
 // Returns the name of the station indicated by Location.

 AnsiString NextStation(void);
 // Returns the name of the next station at which the train will stop.

 // There are other methods that do not concern us
};

Write the code for this class, giving definitions for the three listed methods.

(Object & Classes)

Question 7 (10 marks)

This question is to do with preparation for writing a proper Database Application using Object Oriented
C++ :
(a) Write a function to convert a character to uppercase
(b) The company want to create a database to keep track of its employees name, address and salary. Write a
class with appropriate method definitions any other necessary variables to capture what the company wants.
Your methods should be one for initialisation, one for adding an employee and one for displaying the
employee details
(c) Sketch design for files needed to write the database application and what should go in each file

(Graphics Form)

 - 5/27 -

Question 8 (5 marks)

This question is concerned with generating the display shown below, consisting of two circles of the same
size with their centres joined by a horizontal line. The circle to the left should be coloured red, that on the
right should be coloured blue and the line should be black.

The code to draw the picture should only appear in the OnPaint event handler.
(a) Write the code for the OnPaint event handler that will produce the diagram above in such a way that

the red circle has diameter 40 and the top left of its bounding rectangle is at pixel position (50,100).
The centres of the two circles should be 100 pixels apart.

The application is now to be modified so that the figure can be made to track across the screen to the right
one pixel at a time. Users will make it track by pressing the button called Move Right in the figure below.

(b) Write down the revised code for the OnPaint handler and the code for the button OnClick event
handler. You may assume that a Form variable called X has been declared and has been initialised to 0.
You may reference or reset the value of this variable in your event handlers.

(Graphic Code)

 - 6/27 -

Question 9 (5 marks)

Write a menu driven software for the employee database and implement an event handler for quitting the
software. Save the software as EmpDB and don’t worry about implementing event handlers for adding and
displaying employees for this tutorial. The graphical output should look similar to the figure below :

(Event Handlers)

 - 7/27 -

Question 10 (7 marks)

As part of a project a form is to be created for input of data. The user is to enter a code which must begin
with one of the letters A, M or S and thereafter must contain at least one of the digits 0, 1 or 2. So M102, S1
are examples of legal entries whereas MS284, M and M23S are examples of illegal inputs.
The proposed interface is shown above in its initial state. To ensure that the user does not enter illegally
formatted codes the interface must be implemented so that only the buttons may be used to enter data and so
that buttons are only active at appropriate points in the input cycle.
For example, for a user to enter the code M102, they would first press the M button at which point the edit
box should display M. The letter buttons should now become inactive and the digit buttons become active.
Pressing the digit button 1 results in the edit box showing M1. Further digits may be entered so that pressing
the digit 0 would result in the edit box showing M10 and finally pressing 2 would give M102.
The Clear button is to enable the user to abort the input. This should have the effect of returning the form to
its initial state. This is the only way that the input may be edited.
The Accept button is used when the entered code is as the user would wish.
The methods DigitsOffLettersOn(), DigitsOnLettersOff() may be assumed to be available. The former
disables all the digits buttons and enables the letter buttons. The latter does the converse.
(a) Give a design-time properties for the edit box (which is implemented as a TEdit component called

Edit1) which is different from its default behaviour.
(b) Assuming that the names of the buttons with letter captions are the same as their captions, and that the

digit buttons have names one, two and three respectively, write the code for the body of the method
DigitsOnLettersOff()

(c) Write the event handler code for the button labelled A.
(d) Write the code for the event handler for the Clear button.

(Graphics)

 - 8/27 -

PART II example questions

You attempt TWO the questions in this part and are advised to spend about 85 minutes on it.
The marks for each question are given beside the question.

Question 11
A route planner, part of which is shown below, shows the distances in miles between 25 towns. In the figure
the first 4 towns of the planner are shown. By looking along the row containing Cardiff to the column
containing Birmingham it can be seen that it is 106 miles between Cardiff and Birmingham. Note that the
planner has no entries in its 'upper triangle'. So you cannot find the distance between Birmingham and
Dover by looking along the row containing Birmingham. Instead you must look along the row containing
Dover to the column containing Birmingham.

Aberdeen 0

Birmingham 473 0

Cardiff 524 106 0

Dover 619 202 233 0

 Aberdeen Birmingham Cardiff Dover

A C++ class will be used to model the planner and its behaviour using the declarations below. The planner
will store exactly 25 names.

class PlannerType
{//We assume parameters are always valid names
 AnsiString Names[25]
 int Table[25][25];
 public:
 void Initialize();
 int Distance(AnsiString From, AnsiString To);
 int Journey(AnsiString From, AnsiString To, AnsiString ViaName);
 protected:
 int FindIndex(AnsiString AName);
};

The array Names stores the 25 place names in alphabetical order and the array Table stores the distance
between them as shown in the table. So, for example, the entry Table[2][0] will store the value 524 and will
represent the distance between Cardiff, which is stored at index 2 in Names and Aberdeen, which is stored
at index 0 in Names. Elements of Table like Table[0][2], whose second index is larger than the first,
correspond to the 'upper triangular' entries in the planner and are therefore unused. The protected method
FindIndex returns the index at which a given place name is stored.

(a) The method Initialize has to assign appropriate contents to the array Table. Elements of Table that
are unused, as described above, should be set to -1. Write down a sequence of C++ statements which
will make the necessary assignments for the data corresponding to the Aberdeen and Birmingham
rows (indexed 0 and 1 respectively) of the table. [6 marks]

(b) Write the implementation of the method FindIndex as it would appear in the .cpp file. You should
assume that AName is a name that exists in Names.

 - 9/27 -

(c) Write the implementation of the method Distance whose purpose is to return the distance between
the towns whose names are given in the two parameters. You may assume that the two parameters
are valid names. [3 marks]

(d) Write the implementation of the method Journey whose purpose is to return the distance between two

towns when the journey is carried out via an intermediate town. So, for example, for the journey
from Aberdeen to Birmingham via Cardiff the function would return the value 630, this being the
sum of the distances from Aberdeen to Cardiff and from Cardiff to Birmingham. You may assume
that the three names are valid names. [4 marks]

(e) Give a reason why you think FindIndex is declared protected and what the consequences of this are
to users of the class.

 - 10/27 -

Question 12
This question concerns a prototype for a system that will enable aircraft seat bookings to be made over the
internet. Part of the system requires the user to choose the departure and destination airports, an interface
for which is shown below. In its initial state, the departure and destination airports are both set to London.
When the departure and destination airports differ then the route is shown on the map by means of a red
line.
The state illustrated below shows that the departure airport is London, that the destination is Inverness.

This journey is shown by a line between these two places on the map. The example also shows that the user
is about to select the new destination of Glasgow.
The user selects an airport by means of the ComboBoxes. whose names on the Builder's Form are
Departure and Destination respectively.
For experienced users an alternative method of departure and destination airport selection is to be provided.
A left mouse click on the map in the vicinity of a place having an airport will select the departure airport. A
right click will select the destination.
The map is provided by a bitmap file measuring 200 pixels across and 365 pixels down which is positioned
in the top left of the screen. (All co-ordinates mentioned in the question will be relative to (0, 0), this being
at the top left as described in the course units.) In addition a class AirPortType is provided whose task
is to keep information about airports. The part of its declaration which is public is:
class AirportType
{
 public:
 int GetX(AnsiString APlace);
 int GetY(AnsiString APlace);
 void Init();
 AnsiString IsNear(int AnX, int AY);

 };

 - 11/27 -

These methods perform the following tasks:
GetX Return the X co-ordinate of the airport whose name is APlace. It should be assumed that

APlace is a valid name of an airport represented by the class.
GetY Return the Y co-ordinate of the airport whose name is APlace. It should be assumed that

APlace is a valid name of an airport represented by the class.
Init Initialize an instance. You need not know any details of this except that airports at London,

Exeter, Glasgow and Inverness are all represented.
IsNear Answer with an AnsiString that is the name of an airport whose co-ordinate are 'near' to those

of X, Y. If there is no 'near' airport then return the empty string. You do not need to know how
'near' is measured.

(a) The Form used to build the application contains a TImage component called Image1 which contains

the map shown above. Explain why the Visible property of this component is set to false at design
time.

(b) The Form's OnCreate handler includes the following code.
Departure->ItemIndex = Departure->Items->IndexOf("London");

Explain what the left hand side refers to and explain how the value which is assigned to it arises from
the expression on the right hand side.

(c) The OnChange handler for each of the ComboBoxes, Departure and Destination has to cause
a line to be drawn on the map. So each of these handlers will cause the form to be repainted. Write the
code for the OnPaint handler, remembering that both the image and the line have to be painted. (If
the destination and departure points are the same then the line is simply drawn from one point to itself!)

(d) The following incomplete code corresponds to the handler which deals with those users who prefer to
use a mouse to select the departure and destination airports. The first if statement covers the possibility
that the user clicks close enough to an airport. The second one distinguishes between a left mouse click
and a right mouse click. You should submit the complete code for the handler (including that given in
the question).

void fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
 TShiftState Shift, int X, int Y)
{
 if ()
 {
 if (Button == mbLeft)
 //statement(s) to handle a left mouse button click
 else
 //statement(s) to handle a right mouse button click
 };
//statements
}

 - 12/27 -

Question 13
This question is concerned with an electronically controlled set of bathroom scales. The figure below shows
the state of the scales when not in use - this mode will be referred to as 'sleep' mode. The scales can record
data on up to four people but it is up to those people to member which of the buttons corresponds to them.

Figure 1
To activate the scales a user presses the button that they have agreed with the other users is theirs. Figure 2
below shows the state of the machine after the Person1 button has been pressed.

Figure 2
The last 5 weights of that person are shown as a history file together with the date on which each weight
was taken. The button labelled Weigh has also become activated.
On pressing the Weigh button, the weight of the person on the scales is taken and displayed. This weight is
also recorded in the machine's memory and the historical data is updated. The figure below shows the
outcome when Person1 pressed the Weigh button with the machine in the state shown in Figure 2.

 - 13/27 -

Figure 3
Note that this figure shows that the Weigh button has become disabled and it can only be reactivated by a
user pressing one of the buttons Person1, Person2, Person3 or Person4.
In the event that a user does not press any button for a period of 10 seconds the machine will go into sleep
mode as shown in Figure 1.
The engine for this application will make use of a class ScalesType whose declaration is as follows.
class ScalesType
{
 struct WeightRecord
 {
 float Weight;
 AnsiString Date;
 };
 WeightRecord History[5];

 public:
 void Init(void);
 AnsiString Weigh(void);
 AnsiString HistoryOf(void);
};

The methods are specified as follows:
Init Initialise all four elements of History to records whose Weight field is 0 and Date field is the

null string.
HistoryOf Return a string consisting of pairs of date, weight data each separated by a comma. So for

example for the data in Figure 3 this method would produce the string "04/02/99 76.3,
04/02/99 78.6, 04/02/99 78.7, 04/02/99 77.0, 04/02/99 77.4,".

Weigh This method first simulates weighing the person and this is achieved by a random number
generator. The randomly generated weight and the time it was generated are then assigned to
History[0] with all other values being pushed down the array (so that History[5] gets
overwritten). The randomly generated weight is returned as a string.

(a) Write down an implementation of the method Init.
(b) Write an implementation of the method HistoryOf.
(c) Part of the body of the implementation of Weigh is shown below. Complete the missing details

 float Weight;
 AnsiString WeightStr, DateStr;

 - 14/27 -

 int i;

 Weight = 76.0 + (float)random(300)/100;
 WeightStr = FormatFloat("0.0", Weight); //see comment below
 DateStr = DateToStr(Date());
 //Missing details go here
}

Comment: The function FormatFloat converts a real number to a string using the pattern given by the
first parameter. So here WeightStr will be a string representation of a real number correct to 1 decimal
place.

The application includes the following Form declarations
__published: // IDE-managed Components
 TEdit *Edit1; //used for the current weight display
 TButton *Person1;
 TButton *Person2;
 TButton *Person3;
 TButton *Person4;
 TMemo *Memo1; //used for the history data
 TButton *Weigh;
 void __fastcall FormCreate(TObject *Sender);
 void __fastcall Person1Click(TObject *Sender);
 void __fastcall Person2Click(TObject *Sender);
 void __fastcall Person3Click(TObject *Sender);
 void __fastcall Person4Click(TObject *Sender);
 void __fastcall WeighClick(TObject *Sender);
public: // User declarations
 ScalesType MyScales[4];
 int CurrentUser;
 void WriteHistory();
 void ReInitTimer();

The button Person1 will deal with a CurrentUser numbered 0 whose associated ScalesType
object is MyScales[0]. The button Person2 will deal with a CurrentUser numbered 1 whose
associated ScalesType object is MyScales[1] and so on. The method WriteHistory produces
the text in the Memo1 field and the method ReInitTimer causes the state of the machine to revert to
'sleep' mode after 10 seconds.
(d) Write the body of the code for the Form's OnCreate event.
(e) Write the event handler Person1Click.
(f) Write the event handler WeighClick.

 - 15/27 -

Answers

Answer to question 1

Note that it is assumed that Line is initialised but despite this we include the code fragment that contains its
declaration.
int Count, Index;
AnsiString Line;

Count = 0;
for (Index = 1; Index <= Length(Line); Index = Index + 1)
 if (Line[Index] == 'a')
 {
 Line[Index] = 'A';
 Count = Count + 1;
 }
WriteStringPrCr("Revised string is ", Line);
WriteIntPr("Number of changes was ", Count);

Comment
The question tests the use of == for equality and the fact that string indexing starts at 1. There are many
different ways to code the output using a variety of the MT262io routines.

Answer to question 2
1.1 Channel <− 1
1.2 StillGoing <− true
2.1 loop while StillGoing
3.1 write out "Channel = ", Channel
3.2 read in Choice
3.3 if Choice = 'N' then
3.4 Channel <− (Channel mod 60) + 1
3.5 else
3.6 StillGoing <− false
3.7 ifend
4 loopend

Comment
Any alternative to our use of mod is acceptable. The test at 3.3 can be expressed in a number of equivalent
ways. Step numbering must be consistent with that given in the question.

 - 16/27 -

Answer to question 3
(a) The declarations are as follows.

struct MemberType
{
 AnsiString Name;
 int Age;
 float Handicap;
};
MemberType Members[100];

Comment
Note the CourseTeam style is separate declarations, so a semicolon after the struct declaration is vital.

(b) The code is
Members[20].Name = "Best";
Members[20].Age = 52;
Members[20].Handicap = 8.4;

(c) Since we are told the search will succeed a simple while loop will do. The declaration of a looop
control variable is expected.
int Index;
while (Members[Index].Name != "Sargent")
 Index = Index + 1;
Members[Index].Handicap = 8.3;

Answer to question 4
(a) The function code is as follows.

float QualifiedAverage(int Scores[20], int Qualification)
{
 int Count, Index, Total;

 Total = 0;
 Count = 0;
 for (Index = 0; Index <= 19; Index = Index + 1)
 {
 if (Scores[Index] <= Qualification)
 {
 Total = Total + Scores[Index];
 Count = Count + 1;
 }
 }
 if (Count == 0)
 return -1;
 else
 return (float) Total/Count;
 };

Comment
The division that calculates the average must be done on floats hence Total has to be cast into a float.
Indexes must run from 0 to 19.

(b) The required statement is
MyAverage = QalifiedAverage(MyScore, 10);

 - 17/27 -

Answer to question 5

OutFile.open("Data.txt");
for (Count = 1; Count <= 3; Count = Count + 1)
{
 OutFile << (Count + 10) << "\n";
 cout << "Number stored to file was " << (Count + 10) << endl;
 }
OutFile.close();
Count = 0;
InFile.open("Data.txt");
while (! InFile.eof())
{
 InFile >> ANumber >> ws;
 Count = Count + 1;
 cout << "Number retrieved from file was " << ANumber << endl;
}
InFile.close();
cout << "Count of numbers retrieved was " << Count;

Comment
The loop illustrates the two different ways in which a new line may be inserted into the streams. Either can
be used.

Answer to question 6
void TrainType::MoveOneStation(void)
{
 if (Outward)
 {
 Location = Location + 1;
 if (Location == 9)
 Outward = false;
 }
 else
 {
 Location = Location - 1;
 if (Location == 0)
 Outward = true;
 }
};

AnsiString TrainType::CurrentStation(void)
{
 return Names[Location];
};

AnsiString TrainType::NextStation(void)
{
 if (Outward)
 return Names[Location + 1];
 else
 return Names[Location - 1];
};

 - 18/27 -

Answer to question 7

(a)
char Tut3_uppercase(char selection)

{

 if ((selection >= 'a') && (selection <= 'z'))

 selection = selection - 32;

 return selection;

}

(b)
#define MaxEmp 2

class CompanyType

{

 private:

 struct EmployeeType

 {

 int Salary;

 AnsiString Address;

 AnsiString FullName;

 };

 EmployeeType Employee[MaxEmp];

 public:

 void Init(void);

 AnsiString AddEmp(AnsiString EmpName, AnsiString EmpAddress, int
EmpSalary);

 void DispEmp(void);

};

(c)
The files can be divided into 5 files as follows :

Tut3_3.cpp : Main file which contains the main driving code.
Tut3_3_methodimp.cpp : File containing the implementation of the methods in the Company class
Tut3_3_methodimp.h : contains the class definition used by the database
Tut3_3_funcimp.cpp : contains the implementation of functions used by the methods in the Company class
and the main driver
Tut3_3_funcimp.h : contains function prototypes (definition)

 - 19/27 -

Answer to Question 8

(a) The code is

void __fastcall TForm1::FormPaint(TObject *Sender)
{
 Canvas ->Brush->Color= clRed;
 Canvas -> Ellipse(50,100,90,140);
 Canvas ->Brush->Color= clBlue;
 Canvas -> Ellipse(150,100,190,140);
 Canvas ->Brush->Color= clBlack;
 Canvas -> MoveTo(70,120);
 Canvas->LineTo(170, 120);
}

(b) The code above has to be modified so that the x coordinates can be adjusted (using the Form variable
X) thus enabling the shapes to track right.
void __fastcall TForm1::FormPaint(TObject *Sender)
{
 Canvas ->Brush->Color= clRed;
 Canvas -> Ellipse(50 + X,100,90 + X,140);
 Canvas ->Brush->Color= clBlue;
 Canvas -> Ellipse(150 + X,100,190 + X,140);
 Canvas ->Brush->Color= clBlack;
 Canvas -> MoveTo(70 + X,120);
 Canvas->LineTo(170 + X, 120);
}

The OnClick event handler then has to increment X each time the button is pressed and request a
repaint. We have used the default name for the button (and hence the default name for the handler).
void __fastcall TForm1::Button1Click(TObject *Sender)
{
 X = X + 1;
 Repaint();
}

Answer to question 9

To solve this do the following with C++ Builder :
1) Click on File then New Application
2) Save the project by clicking on File then Save Project As, call the .cpp file as EmpDBU and the

project as EmpDB. DO NOT use the same name for both as this will crash the program and causes
problems.

3) On the Form drag the menu button
4) Click on Form and change the Caption to EmployeeDatabase
5) Double click on the menu button on the Form and change the Caption to MainMenu
6) Press Enter and then change the Caption to AddEmp do the same for the rest
7) Click on Quit then on Events and double click on the right of OnClick this will take you to the event

handler for what the program should do when the user presses the Quit button. Type Application-
>Terminate();

8) Save the program and run. This should give you your graphical database menu application.

 - 20/27 -

Code for EmpDB software

EmpDB.cpp (generated by Builder)

//---

#include <vcl.h>

#pragma hdrstop

USERES("EmpDB.res");

USEFORM("EmpDBU.cpp", MainForm);

//---

WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)

{

 try

 {

 Application->Initialize();

 Application->CreateForm(__classid(TMainForm), &MainForm);

 Application->Run();

 }

 catch (Exception &exception)

 {

 Application->ShowException(&exception);

 }

 return 0;

}

//---

EmpDBU.cpp

//---

#include <vcl.h>

#pragma hdrstop

#include "EmpDBU.h"

//--

#pragma package(smart_init)

#pragma resource "*.dfm"

TMainForm *MainForm;

 - 21/27 -

//--

__fastcall TMainForm::TMainForm(TComponent* Owner)

 : TForm(Owner)

{

}

//--

void __fastcall TMainForm::QuitMClick(TObject *Sender)

{

 Application->Terminate();

}

//---

EmpDBU.h

//---

#ifndef EmpDBUH

#define EmpDBUH

//---

#include <Classes.hpp>

#include <Controls.hpp>

#include <StdCtrls.hpp>

#include <Forms.hpp>

#include <Menus.hpp>

//---

class TMainForm : public TForm

{

__published: // IDE-managed Components

 TMainMenu *MainMenu1;

 TMenuItem *MainMenu2;

 TMenuItem *AddEmpM;

 TMenuItem *DispEmpM;

 TMenuItem *QuitM;

 void __fastcall QuitMClick(TObject *Sender);

private: // User declarations

public: // User declarations

 __fastcall TMainForm(TComponent* Owner);

};

//---

extern PACKAGE TMainForm *MainForm;

//---

#endif

 - 22/27 -

Answer to question 10

(a) It must have its ReadOnly property set to true because users are not allowed to modify the text in the

box. It must also have its initial Text property set empty and it should have the focus (which can be set
by defining its TabOrder to be 0).

(b) The code is
void TForm1::DigitsOnLettersOff()
{
 One -> Enabled = true;
 Two -> Enabled = true;
 Zero -> Enabled = true;
 A -> Enabled = false;
 M -> Enabled = false;
 S -> Enabled = false;
}

(c) The code is
void __fastcall TForm1::AClick(TObject *Sender)
{
 Edit1 -> Text = Edit1->Text + "A";
 DigitsOnLettersOff();
}

(d) The code is
void __fastcall TForm1::ClearClick(TObject *Sender)
{
 Edit1 -> Clear();
 DigitsOffLettersOn();
 Accept -> Enabled = false;
}

Comment
The key property for the Edit box is that it should be ReadOnly.

 - 23/27 -

Answer to question 11

(a) Unused elements have to be initialized to -1 and so every element in each row must be assigned a

value.
for (I = 0; I < 25; I = I + 1)
 {
 Table[0][I] = -1;
 Table[0][0] = 0;
 };
for (I = 0; I < 25; I = I + 1)
 {
 Table[1][I] = -1;
 Table[1][0] = 473;
 Table[1][1] = 0;
 };

(b) The code is
int PlannerType::FindIndex(AnsiString AName)
{
 int Index;

 Index = 0;
 while (Names[Index] < AName)
 Index = Index + 1;
 return Index;
};

(c) The specification does not insist that the parameters are supplied in alpha order and so the code has to
allow for them not being so ordered.
float PlannerType::Distance(AnsiString From, AnsiString To)
{
 if (From > To)
 return Table[FindIndex(From)][FindIndex(To)];
 else
 return Table[FindIndex(To)][FindIndex(From)];
};

(d) The implementation must use the existing method. Failure to do so would be penalized heavily.
float PlannerType::Journey(AnsiString From, AnsiString To, AnsiString
Via)
{
 return Distance(From, Via) + Distance(Via, To);
};

(e) The method FindIndex is required in order to simplify the impelmentation of other methods. It is not
intended for end users, who should not be aware of how the table is represented (and who therefore do
not need to know about indexes at all). To stop end users sending this message, FindIndex needs to be
declared private or protected. Here it is declared protected which means developers who subclass
PlannerType may call FindIndex. Had it been declared private then not even subclass developers
would have had access to FindIndex and this would have severeley limited their ability to extend the
functionality of the subclass; they would not be able to find the index at which a name is stored.
(Neither would they be able directly to access Names because it is declared private.)
Comment
This is somewhat longer than an expected solution but some discussion of the issues realting to
subclassing and 'end using' would be expected.

 - 24/27 -

Answer to question 12

(a) The image has to be drawn on the canvas because a purpose of the programme is to draw lines on the

map. This can only be achieved if the image is part of the canvas. So the image itself must be not
visible but must be transferred, pixel by pixel, to the canvas. If we left the image itself as visible then
we would get two copies of the bit-map, one of the image and one of the copy on the Canvas.

(b) The left-hand side Departure->ItemIndex specifies the index of the item that will be shown in the
ComboBox window. By default this should read "London". So the right-hand side calculates the index
of London in the list of stored strings in Departure. Departure->Items returns the strings (in fact
TStrings) and IndexOf("London") is a message which is sent to the latter and which asks for the index
of the occurrence of London to be returned.

(c) The code is
void __fastcall TForm1::DepartureChange(TObject *Sender)
{
 Repaint();
}
//--

void __fastcall TForm1::DestinationChange(TObject *Sender)
{
 Repaint();
}
//--

void __fastcall TForm1::FormPaint(TObject *Sender)
{
//Pixel by pixel copying is OK as an exam answer. However it runs
//very slowly.
// int i, j ;
// for (i=0; i < 202; i = i+ 1)
// for (j =0; j <365; j = j + 1)
// Canvas->Pixels[i][j] = Image1->Canvas->Pixels[i][j];
//Use of CopyRect solves this and is a better solution.

 Canvas->CopyRect(ClientRect,Image1->Canvas, ClientRect);
 Canvas->Pen->Color = clRed;
 Canvas->MoveTo(Airports.GetX(Departure ->Text),
 Airports.GetY(Departure ->Text));
 Canvas->LineTo(Airports.GetX(Destination ->Text),
 Airports.GetY(Destination ->Text));
}
//---

Comment
The major point here is that all the ComboBox OnChange handlers have to do is to call Repaint which
does all the work (via the handler OnPaint). The OnPaint handler must first copy the image to the
Form's Canvas. The solution shows two ways in which this can be done. The pixel by pixel method is
slow but would get full marks if accurately done. Next the pen has to be set to the correct colour. (We
should really have reset this colour to the default at the end of this method but nothing else uses a Pen
and so this answer would get full marks.) The required line may be drawn either from the departure
airport to the destination or the other way around. It does not matter. Here we have chosen to move to
the departure airport and then draw the line to the destination. To move to the co-ordinates of the

 - 25/27 -

departure airport we need to find the co-ordinates from its name. Its name is given by
Departure->Text, namely what is in the text part of the Departure ComboBox. Airports keeps track of
co-ordinates and so we send it GetX and GetY messages, with parameter which is the name of the
airport. The expression Canvas->MoveTo uses these points as parameters.
It is expected that you remember that the canvas of a form is called Canvas and so this name was not
mentioned in the question. We would also expect you to have some idea of what a handler header looks
like. In particular we would expect you to know that the name given to it by Builder is derived from the
components name and that all handlers have at least one parameter, namely the Sender of the message.
We would not expect you to remember the precise syntax.

(d) The required code is:
void __fastcall TForm1::FormMouseDown(TObject *Sender,
 TMouseButton Button, TShiftState Shift, int X, int Y)
{
 if (Airports.IsNear(X,Y) != "")
 {if (Button == mbLeft)
 Departure->ItemIndex =
 Departure->Items->IndexOf(Airports.IsNear(X,Y));
 else
 Destination->ItemIndex =
 Destination->Items->IndexOf(Airports.IsNear(X,Y));}
 Repaint();

 }

Comment
IsNear is sent to Airports and it returns either the empty string or the name of a place with an airport. In
the case of the former we do nothing. In the case of the latter we first determine whether a right click or
a left click was responsible for the event. For a left button click we use the code exploited in part (b)
but the parameter here is Airports.IsNear(X, Y). So the text displayed by Departure has to be updated
to the name returned by IsNear. The only way to do this is to find the index at which it is stored in the
Items list of Departure. The analogous situation holds for a right click. Whatever the outcome, a
Repaint message is sent to update the display.

 - 26/27 -

Answer to question 13

(a) The solution is:

#include "Vegetable.h"

class MachineType
{
 Vegetable Items[10];
 public:
 AnsiString Weigh(AnsiString AVegName);
 AnsiString VegStr();
 float PriceOf(AnsiString AVegName);
 void ChangeItem(AnsiString OldName, AnsiString NewName, float
UnitCost);
 void Init();
 void ChangePrice(AnsiString AVegName, float NewPrice);
 private:
 int IndexOf(AnsiString AVegName);
};

Comment
The file needs an include statement because it references the class vegetable whose definition is in
Vegetable.h. The final semi-colon is vital.

(b) The solution is:
int MachineType::IndexOf(AnsiString AVegName)
{int i;

 i = 0;
 for (i=0; i < 10; i = i + 1)
 if (AVegName == Items[i].GetName())
 return i;
 return i;
};

Comment
The specification tells us that it should be assumed that AVegName is a name in one of the objects in
Items and so a simple search is bound to succeed. (Parts (e) and (f) of the question investigate this
further.) Answers that included redundant testing would be penalised. In this code Items[i] represents a
Vegetable object and to retrieve its name we send it a GetName message.
There are many alternative solutions to this code. On finding a match, the first return statement causes
an immediate exit from method (thereby exiting the for loop). The second return statement is not
strictly required because we know (but the compiler does not) that a match is guaranteed within the for
loop. Failure to include the second return would cause a compiler warning but it would compile and
run. Indeed it returns 10 in the event of failing to find a match.

(c) The solution is:
float MachineType::PriceOf(AnsiString AVegName)
{
 return (Items[IndexOf(AVegName)].GetPrice());
}

 - 27/27 -

Comment
This method needs to find the index of Items which holds the object with name AVegName. The
expression Items[IndexOf(AVegName)] does this. Then we send this object the GetPrice message
which returns the unit cost. Again the specification tells us not to worry about AVegName not being a
name in the Items objects.

(d) The solution is:
void MachineType::ChangeItem(AnsiString OldName, AnsiString NewName,
float UnitCost)
{ Vegetable NewVeg;

 NewVeg.Init(NewName, UnitCost);
 Items[IndexOf(OldName)]= NewVeg;
}

Comment
A local variable is needed which will be a new instance of Vegetable. This instance is initialised with
the parameters NewName and UnitCost. This object then replaces the element of Items which contains
an object having name OldName.

(e) The interface can obtain all the names by sending the engine the message VegStr. This returns a string
of all the names (separated by commas). This string can then be used to assign Captions to the buttons
and items to the ComboBox.
Comment
A solution along these lines would get full marks. The essential information that your answer needs to
convey is that the interface gets its information from the engine via the method VegStr. This method
passes back the names of the 10 vegetables it holds. Had we been developing a real application (rather
than an exam question) then we would have used a const definition rather than the number 10. The
designer of the interface would then have to ensure that there are the same number of buttons as there
are objects in Items.

(f) The person updating the weighing machine selects an item from the drop down-list for updating. The
resulting choice (a string) is bound to exist in Items because that is how the drop down-list was created
(see part (e)).
Comment
The key point is that users do not type in the name of an existing vegetable - they select from a list. So
the selected name is bound to exist - users are not given the opportunity to make input typing errors.

(g) The way in which the Vegetable objects are stored is of no concern to users of MachineType and they
should not be given access to it.
Comment
This explanation would get full marks but we expand upon it here. As implementors of MachineType
we have frequent need to find the index at which an object is stored and so it makes sense to provide
ourselves with a function, IndexOf, which does this. That function needs to be potentially available to
all the methods we implement and so we declare it as part of the class. Declaring the method to be
private means we, as implementors of MachineType can use it when implementing other methods of
the class, but users do not have access to it.
To extend this further, users should be blissfully unaware how the individual Vegetable objects are
being stored and should certainly not be given access to the chosen way. We, as implementors of
MachineType, used an array to store the 10 Vegetable objects. But we could have used a different
method such as a linked list (as used in the implementation of a stack in Block IV Unit 2) in which case
IndexOf would be inappropriate and would not be needed. (We may well find need of an analogous
function but that would depend upon the precise structure we chose instead of an array.)

	I have put this tutorial on the web. This tutorial can be viewed and downloaded from http://www.users.totalise.co.uk/~rifat then selecting MT262 Tutorials then Exam Revision.
	Revision questions taken from various past exam papers and past MT262 tutorials
	
	
	
	PART I example questions

	Question 1 (5 marks)
	Question 4 (6 marks)
	Question 5 (5 marks)
	(Input/Output)
	Question 6 (5 marks)
	
	
	
	(Object & Classes)
	Question 7 (10 marks)
	Question 8 (5 marks)

	Question 10 (7 marks)
	
	
	
	PART II example questions

	Question 11
	Question 13
	Answer to question 1
	Comment
	Answer to question 2

	Comment
	Answer to question 3

	Comment
	Answer to question 4

	Comment
	Answer to question 5

	Comment
	Answer to question 6

	Code for EmpDB software
	Answer to question 10

	Comment
	Answer to question 11

	Comment
	Answer to question 12

	Comment
	Comment
	Answer to question 13

	Comment
	Comment
	Comment
	Comment
	Comment
	Comment
	Comment

